* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> n__f(X) - Signature: {activate/1,f/1} / {n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,f} and constructors {n__f} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__f(X)) -> c_2(f#(X)) f#(X) -> c_3() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__f(X)) -> c_2(f#(X)) f#(X) -> c_3() - Weak TRS: activate(X) -> X activate(n__f(X)) -> f(X) f(X) -> n__f(X) - Signature: {activate/1,f/1,activate#/1,f#/1} / {n__f/1,c_1/0,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {n__f} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate#(X) -> c_1() activate#(n__f(X)) -> c_2(f#(X)) f#(X) -> c_3() * Step 3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__f(X)) -> c_2(f#(X)) f#(X) -> c_3() - Signature: {activate/1,f/1,activate#/1,f#/1} / {n__f/1,c_1/0,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {n__f} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:activate#(X) -> c_1() 2:S:activate#(n__f(X)) -> c_2(f#(X)) -->_1 f#(X) -> c_3():3 3:S:f#(X) -> c_3() The dependency graph contains no loops, we remove all dependency pairs. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {activate/1,f/1,activate#/1,f#/1} / {n__f/1,c_1/0,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,f#} and constructors {n__f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))